{-# LANGUAGE Trustworthy #-} {-# LANGUAGE NoImplicitPrelude, MagicHash, UnboxedTuples #-} {-# OPTIONS_HADDOCK hide #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.Num -- Copyright : (c) The University of Glasgow 1994-2002 -- License : see libraries/base/LICENSE -- -- Maintainer : [email protected] -- Stability : internal -- Portability : non-portable (GHC Extensions) -- -- The 'Num' class and the 'Integer' type. -- ----------------------------------------------------------------------------- module GHC.Num (module GHC.Num, module GHC.Integer) where import GHC.Base import GHC.Integer infixl 7 * infixl 6 +, - default () -- Double isn't available yet, -- and we shouldn't be using defaults anyway -- | Basic numeric class. class Num a where {-# MINIMAL (+), (*), abs, signum, fromInteger, (negate | (-)) #-} (+), (-), (*) :: a -> a -> a -- | Unary negation. negate :: a -> a -- | Absolute value. abs :: a -> a -- | Sign of a number. -- The functions 'abs' and 'signum' should satisfy the law: -- -- > abs x * signum x == x -- -- For real numbers, the 'signum' is either @-1@ (negative), @0@ (zero) -- or @1@ (positive). signum :: a -> a -- | Conversion from an 'Integer'. -- An integer literal represents the application of the function -- 'fromInteger' to the appropriate value of type 'Integer', -- so such literals have type @('Num' a) => a@. fromInteger :: Integer -> a {-# INLINE (-) #-} {-# INLINE negate #-} x - y = x + negate y negate x = 0 - x -- | the same as @'flip' ('-')@. -- -- Because @-@ is treated specially in the Haskell grammar, -- @(-@ /e/@)@ is not a section, but an application of prefix negation. -- However, @('subtract'@ /exp/@)@ is equivalent to the disallowed section. {-# INLINE subtract #-} subtract :: (Num a) => a -> a -> a subtract x y = y - x instance Num Int where I# x + I# y = I# (x +# y) I# x - I# y = I# (x -# y) negate (I# x) = I# (negateInt# x) I# x * I# y = I# (x *# y) abs n = if n `geInt` 0 then n else negate n signum n | n `ltInt` 0 = negate 1 | n `eqInt` 0 = 0 | otherwise = 1 {-# INLINE fromInteger #-} -- Just to be sure! fromInteger i = I# (integerToInt i) instance Num Word where (W# x#) + (W# y#) = W# (x# `plusWord#` y#) (W# x#) - (W# y#) = W# (x# `minusWord#` y#) (W# x#) * (W# y#) = W# (x# `timesWord#` y#) negate (W# x#) = W# (int2Word# (negateInt# (word2Int# x#))) abs x = x signum 0 = 0 signum _ = 1 fromInteger i = W# (integerToWord i) instance Num Integer where (+) = plusInteger (-) = minusInteger (*) = timesInteger negate = negateInteger fromInteger x = x abs = absInteger signum = signumInteger