{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

\section[StgSyn]{Shared term graph (STG) syntax for spineless-tagless code generation}

This data type represents programs just before code generation (conversion to
@Cmm@): basically, what we have is a stylised form of @CoreSyntax@, the style
being one that happens to be ideally suited to spineless tagless code
generation.
-}

{-# LANGUAGE CPP #-}

module StgSyn (
        GenStgArg(..),

        GenStgTopBinding(..), GenStgBinding(..), GenStgExpr(..), GenStgRhs(..),
        GenStgAlt, AltType(..),

        UpdateFlag(..), isUpdatable,

        StgBinderInfo,
        noBinderInfo, stgSatOcc, stgUnsatOcc, satCallsOnly,
        combineStgBinderInfo,

        -- a set of synonyms for the most common (only :-) parameterisation
        StgArg,
        StgTopBinding, StgBinding, StgExpr, StgRhs, StgAlt,

        -- a set of synonyms to distinguish in- and out variants
        InStgArg,  InStgTopBinding,  InStgBinding,  InStgExpr,  InStgRhs,  InStgAlt,
        OutStgArg, OutStgTopBinding, OutStgBinding, OutStgExpr, OutStgRhs, OutStgAlt,

        -- StgOp
        StgOp(..),

        -- utils
        topStgBindHasCafRefs, stgArgHasCafRefs, stgRhsArity,
        isDllConApp,
        stgArgType,
        stripStgTicksTop,

        pprStgBinding, pprStgTopBindings
    ) where

#include "HsVersions.h"

import GhcPrelude

import CoreSyn     ( AltCon, Tickish )
import CostCentre  ( CostCentreStack )
import Data.ByteString ( ByteString )
import Data.List   ( intersperse )
import DataCon
import DynFlags
import FastString
import ForeignCall ( ForeignCall )
import Id
import IdInfo      ( mayHaveCafRefs )
import Literal     ( Literal, literalType )
import Module      ( Module )
import Outputable
import Packages    ( isDllName )
import Platform
import PprCore     ( {- instances -} )
import PrimOp      ( PrimOp, PrimCall )
import TyCon       ( PrimRep(..), TyCon )
import Type        ( Type )
import RepType     ( typePrimRep1 )
import Unique      ( Unique )
import Util

{-
************************************************************************
*                                                                      *
\subsection{@GenStgBinding@}
*                                                                      *
************************************************************************

As usual, expressions are interesting; other things are boring. Here
are the boring things [except note the @GenStgRhs@], parameterised
with respect to binder and occurrence information (just as in
@CoreSyn@):
-}

-- | A top-level binding.
data GenStgTopBinding bndr occ
-- See Note [CoreSyn top-level string literals]
  = StgTopLifted (GenStgBinding bndr occ)
  | StgTopStringLit bndr ByteString

data GenStgBinding bndr occ
  = StgNonRec bndr (GenStgRhs bndr occ)
  | StgRec    [(bndr, GenStgRhs bndr occ)]

{-
************************************************************************
*                                                                      *
\subsection{@GenStgArg@}
*                                                                      *
************************************************************************
-}

data GenStgArg occ
  = StgVarArg  occ
  | StgLitArg  Literal

-- | Does this constructor application refer to
-- anything in a different *Windows* DLL?
-- If so, we can't allocate it statically
isDllConApp :: DynFlags -> Module -> DataCon -> [StgArg] -> Bool
isDllConApp dflags this_mod con args
 | platformOS (targetPlatform dflags) == OSMinGW32
    = isDllName dflags this_mod (dataConName con) || any is_dll_arg args
 | otherwise = False
  where
    -- NB: typePrimRep1 is legit because any free variables won't have
    -- unlifted type (there are no unlifted things at top level)
    is_dll_arg :: StgArg -> Bool
    is_dll_arg (StgVarArg v) =  isAddrRep (typePrimRep1 (idType v))
                             && isDllName dflags this_mod (idName v)
    is_dll_arg _             = False

-- True of machine addresses; these are the things that don't
-- work across DLLs. The key point here is that VoidRep comes
-- out False, so that a top level nullary GADT constructor is
-- False for isDllConApp
--    data T a where
--      T1 :: T Int
-- gives
--    T1 :: forall a. (a~Int) -> T a
-- and hence the top-level binding
--    $WT1 :: T Int
--    $WT1 = T1 Int (Coercion (Refl Int))
-- The coercion argument here gets VoidRep
isAddrRep :: PrimRep -> Bool
isAddrRep AddrRep     = True
isAddrRep LiftedRep   = True
isAddrRep UnliftedRep = True
isAddrRep _           = False

-- | Type of an @StgArg@
--
-- Very half baked because we have lost the type arguments.
stgArgType :: StgArg -> Type
stgArgType (StgVarArg v)   = idType v
stgArgType (StgLitArg lit) = literalType lit


-- | Strip ticks of a given type from an STG expression
stripStgTicksTop :: (Tickish Id -> Bool) -> StgExpr -> ([Tickish Id], StgExpr)
stripStgTicksTop p = go []
   where go ts (StgTick t e) | p t = go (t:ts) e
         go ts other               = (reverse ts, other)


{-
************************************************************************
*                                                                      *
\subsection{STG expressions}
*                                                                      *
************************************************************************

The @GenStgExpr@ data type is parameterised on binder and occurrence
info, as before.

************************************************************************
*                                                                      *
\subsubsection{@GenStgExpr@ application}
*                                                                      *
************************************************************************

An application is of a function to a list of atoms [not expressions].
Operationally, we want to push the arguments on the stack and call the
function. (If the arguments were expressions, we would have to build
their closures first.)

There is no constructor for a lone variable; it would appear as
@StgApp var []@.
-}

data GenStgExpr bndr occ
  = StgApp
        occ             -- function
        [GenStgArg occ] -- arguments; may be empty

{-
************************************************************************
*                                                                      *
\subsubsection{@StgConApp@ and @StgPrimApp@---saturated applications}
*                                                                      *
************************************************************************

There are specialised forms of application, for constructors,
primitives, and literals.
-}

  | StgLit      Literal

        -- StgConApp is vital for returning unboxed tuples or sums
        -- which can't be let-bound first
  | StgConApp   DataCon
                [GenStgArg occ] -- Saturated
                [Type]          -- See Note [Types in StgConApp] in UnariseStg

  | StgOpApp    StgOp           -- Primitive op or foreign call
                [GenStgArg occ] -- Saturated.
                Type            -- Result type
                                -- We need to know this so that we can
                                -- assign result registers

{-
************************************************************************
*                                                                      *
\subsubsection{@StgLam@}
*                                                                      *
************************************************************************

StgLam is used *only* during CoreToStg's work. Before CoreToStg has
finished it encodes (\x -> e) as (let f = \x -> e in f)
-}

  | StgLam
        [bndr]
        StgExpr    -- Body of lambda

{-
************************************************************************
*                                                                      *
\subsubsection{@GenStgExpr@: case-expressions}
*                                                                      *
************************************************************************

This has the same boxed/unboxed business as Core case expressions.
-}

  | StgCase
        (GenStgExpr bndr occ)
                    -- the thing to examine

        bndr        -- binds the result of evaluating the scrutinee

        AltType

        [GenStgAlt bndr occ]
                    -- The DEFAULT case is always *first*
                    -- if it is there at all

{-
************************************************************************
*                                                                      *
\subsubsection{@GenStgExpr@: @let(rec)@-expressions}
*                                                                      *
************************************************************************

The various forms of let(rec)-expression encode most of the
interesting things we want to do.
\begin{enumerate}
\item
\begin{verbatim}
let-closure x = [free-vars] [args] expr
in e
\end{verbatim}
is equivalent to
\begin{verbatim}
let x = (\free-vars -> \args -> expr) free-vars
\end{verbatim}
\tr{args} may be empty (and is for most closures).  It isn't under
circumstances like this:
\begin{verbatim}
let x = (\y -> y+z)
\end{verbatim}
This gets mangled to
\begin{verbatim}
let-closure x = [z] [y] (y+z)
\end{verbatim}
The idea is that we compile code for @(y+z)@ in an environment in which
@z@ is bound to an offset from \tr{Node}, and @y@ is bound to an
offset from the stack pointer.

(A let-closure is an @StgLet@ with a @StgRhsClosure@ RHS.)

\item
\begin{verbatim}
let-constructor x = Constructor [args]
in e
\end{verbatim}

(A let-constructor is an @StgLet@ with a @StgRhsCon@ RHS.)

\item
Letrec-expressions are essentially the same deal as
let-closure/let-constructor, so we use a common structure and
distinguish between them with an @is_recursive@ boolean flag.

\item
\begin{verbatim}
let-unboxed u = an arbitrary arithmetic expression in unboxed values
in e
\end{verbatim}
All the stuff on the RHS must be fully evaluated.
No function calls either!

(We've backed away from this toward case-expressions with
suitably-magical alts ...)

\item
~[Advanced stuff here! Not to start with, but makes pattern matching
generate more efficient code.]

\begin{verbatim}
let-escapes-not fail = expr
in e'
\end{verbatim}
Here the idea is that @e'@ guarantees not to put @fail@ in a data structure,
or pass it to another function. All @e'@ will ever do is tail-call @fail@.
Rather than build a closure for @fail@, all we need do is to record the stack
level at the moment of the @let-escapes-not@; then entering @fail@ is just
a matter of adjusting the stack pointer back down to that point and entering
the code for it.

Another example:
\begin{verbatim}
f x y = let z = huge-expression in
        if y==1 then z else
        if y==2 then z else
        1
\end{verbatim}

(A let-escapes-not is an @StgLetNoEscape@.)

\item
We may eventually want:
\begin{verbatim}
let-literal x = Literal
in e
\end{verbatim}
\end{enumerate}

And so the code for let(rec)-things:
-}

  | StgLet
        (GenStgBinding bndr occ)    -- right hand sides (see below)
        (GenStgExpr bndr occ)       -- body

  | StgLetNoEscape
        (GenStgBinding bndr occ)    -- right hand sides (see below)
        (GenStgExpr bndr occ)       -- body

{-
%************************************************************************
%*                                                                      *
\subsubsection{@GenStgExpr@: @hpc@, @scc@ and other debug annotations}
%*                                                                      *
%************************************************************************

Finally for @hpc@ expressions we introduce a new STG construct.
-}

  | StgTick
    (Tickish bndr)
    (GenStgExpr bndr occ)       -- sub expression

-- END of GenStgExpr

{-
************************************************************************
*                                                                      *
\subsection{STG right-hand sides}
*                                                                      *
************************************************************************

Here's the rest of the interesting stuff for @StgLet@s; the first
flavour is for closures:
-}

data GenStgRhs bndr occ
  = StgRhsClosure
        CostCentreStack         -- CCS to be attached (default is CurrentCCS)
        StgBinderInfo           -- Info about how this binder is used (see below)
        [occ]                   -- non-global free vars; a list, rather than
                                -- a set, because order is important
        !UpdateFlag             -- ReEntrant | Updatable | SingleEntry
        [bndr]                  -- arguments; if empty, then not a function;
                                -- as above, order is important.
        (GenStgExpr bndr occ)   -- body

{-
An example may be in order.  Consider:
\begin{verbatim}
let t = \x -> \y -> ... x ... y ... p ... q in e
\end{verbatim}
Pulling out the free vars and stylising somewhat, we get the equivalent:
\begin{verbatim}
let t = (\[p,q] -> \[x,y] -> ... x ... y ... p ...q) p q
\end{verbatim}
Stg-operationally, the @[x,y]@ are on the stack, the @[p,q]@ are
offsets from @Node@ into the closure, and the code ptr for the closure
will be exactly that in parentheses above.

The second flavour of right-hand-side is for constructors (simple but important):
-}

  | StgRhsCon
        CostCentreStack  -- CCS to be attached (default is CurrentCCS).
                         -- Top-level (static) ones will end up with
                         -- DontCareCCS, because we don't count static
                         -- data in heap profiles, and we don't set CCCS
                         -- from static closure.
        DataCon          -- Constructor. Never an unboxed tuple or sum, as those
                         -- are not allocated.
        [GenStgArg occ]  -- Args

stgRhsArity :: StgRhs -> Int
stgRhsArity (StgRhsClosure _ _ _ _ bndrs _)
  = ASSERT( all isId bndrs ) length bndrs
  -- The arity never includes type parameters, but they should have gone by now
stgRhsArity (StgRhsCon _ _ _) = 0

-- Note [CAF consistency]
-- ~~~~~~~~~~~~~~~~~~~~~~
--
-- `topStgBindHasCafRefs` is only used by an assert (`consistentCafInfo` in
-- `CoreToStg`) to make sure CAF-ness predicted by `TidyPgm` is consistent with
-- reality.
--
-- Specifically, if the RHS mentions any Id that itself is marked
-- `MayHaveCafRefs`; or if the binding is a top-level updateable thunk; then the
-- `Id` for the binding should be marked `MayHaveCafRefs`. The potential trouble
-- is that `TidyPgm` computed the CAF info on the `Id` but some transformations
-- have taken place since then.

topStgBindHasCafRefs :: GenStgTopBinding bndr Id -> Bool
topStgBindHasCafRefs (StgTopLifted (StgNonRec _ rhs))
  = topRhsHasCafRefs rhs
topStgBindHasCafRefs (StgTopLifted (StgRec binds))
  = any topRhsHasCafRefs (map snd binds)
topStgBindHasCafRefs StgTopStringLit{}
  = False

topRhsHasCafRefs :: GenStgRhs bndr Id -> Bool
topRhsHasCafRefs (StgRhsClosure _ _ _ upd _ body)
  = -- See Note [CAF consistency]
    isUpdatable upd || exprHasCafRefs body
topRhsHasCafRefs (StgRhsCon _ _ args)
  = any stgArgHasCafRefs args

exprHasCafRefs :: GenStgExpr bndr Id -> Bool
exprHasCafRefs (StgApp f args)
  = stgIdHasCafRefs f || any stgArgHasCafRefs args
exprHasCafRefs StgLit{}
  = False
exprHasCafRefs (StgConApp _ args _)
  = any stgArgHasCafRefs args
exprHasCafRefs (StgOpApp _ args _)
  = any stgArgHasCafRefs args
exprHasCafRefs (StgLam _ body)
  = exprHasCafRefs body
exprHasCafRefs (StgCase scrt _ _ alts)
  = exprHasCafRefs scrt || any altHasCafRefs alts
exprHasCafRefs (StgLet bind body)
  = bindHasCafRefs bind || exprHasCafRefs body
exprHasCafRefs (StgLetNoEscape bind body)
  = bindHasCafRefs bind || exprHasCafRefs body
exprHasCafRefs (StgTick _ expr)
  = exprHasCafRefs expr

bindHasCafRefs :: GenStgBinding bndr Id -> Bool
bindHasCafRefs (StgNonRec _ rhs)
  = rhsHasCafRefs rhs
bindHasCafRefs (StgRec binds)
  = any rhsHasCafRefs (map snd binds)

rhsHasCafRefs :: GenStgRhs bndr Id -> Bool
rhsHasCafRefs (StgRhsClosure _ _ _ _ _ body)
  = exprHasCafRefs body
rhsHasCafRefs (StgRhsCon _ _ args)
  = any stgArgHasCafRefs args

altHasCafRefs :: GenStgAlt bndr Id -> Bool
altHasCafRefs (_, _, rhs) = exprHasCafRefs rhs

stgArgHasCafRefs :: GenStgArg Id -> Bool
stgArgHasCafRefs (StgVarArg id)
  = stgIdHasCafRefs id
stgArgHasCafRefs _
  = False

stgIdHasCafRefs :: Id -> Bool
stgIdHasCafRefs id =
  -- We are looking for occurrences of an Id that is bound at top level, and may
  -- have CAF refs. At this point (after TidyPgm) top-level Ids (whether
  -- imported or defined in this module) are GlobalIds, so the test is easy.
  isGlobalId id && mayHaveCafRefs (idCafInfo id)

-- Here's the @StgBinderInfo@ type, and its combining op:

data StgBinderInfo
  = NoStgBinderInfo
  | SatCallsOnly        -- All occurrences are *saturated* *function* calls
                        -- This means we don't need to build an info table and
                        -- slow entry code for the thing
                        -- Thunks never get this value

noBinderInfo, stgUnsatOcc, stgSatOcc :: StgBinderInfo
noBinderInfo = NoStgBinderInfo
stgUnsatOcc  = NoStgBinderInfo
stgSatOcc    = SatCallsOnly

satCallsOnly :: StgBinderInfo -> Bool
satCallsOnly SatCallsOnly    = True
satCallsOnly NoStgBinderInfo = False

combineStgBinderInfo :: StgBinderInfo -> StgBinderInfo -> StgBinderInfo
combineStgBinderInfo SatCallsOnly SatCallsOnly = SatCallsOnly
combineStgBinderInfo _            _            = NoStgBinderInfo

--------------
pp_binder_info :: StgBinderInfo -> SDoc
pp_binder_info NoStgBinderInfo = empty
pp_binder_info SatCallsOnly    = text "sat-only"

{-
************************************************************************
*                                                                      *
\subsection[Stg-case-alternatives]{STG case alternatives}
*                                                                      *
************************************************************************

Very like in @CoreSyntax@ (except no type-world stuff).

The type constructor is guaranteed not to be abstract; that is, we can
see its representation. This is important because the code generator
uses it to determine return conventions etc. But it's not trivial
where there's a module loop involved, because some versions of a type
constructor might not have all the constructors visible. So
mkStgAlgAlts (in CoreToStg) ensures that it gets the TyCon from the
constructors or literals (which are guaranteed to have the Real McCoy)
rather than from the scrutinee type.
-}

type GenStgAlt bndr occ
  = (AltCon,            -- alts: data constructor,
     [bndr],            -- constructor's parameters,
     GenStgExpr bndr occ)       -- ...right-hand side.

data AltType
  = PolyAlt             -- Polymorphic (a lifted type variable)
  | MultiValAlt Int     -- Multi value of this arity (unboxed tuple or sum)
                        -- the arity could indeed be 1 for unary unboxed tuple
  | AlgAlt      TyCon   -- Algebraic data type; the AltCons will be DataAlts
  | PrimAlt     PrimRep -- Primitive data type; the AltCons (if any) will be LitAlts

{-
************************************************************************
*                                                                      *
\subsection[Stg]{The Plain STG parameterisation}
*                                                                      *
************************************************************************

This happens to be the only one we use at the moment.
-}

type StgTopBinding = GenStgTopBinding Id Id
type StgBinding  = GenStgBinding  Id Id
type StgArg      = GenStgArg      Id
type StgExpr     = GenStgExpr     Id Id
type StgRhs      = GenStgRhs      Id Id
type StgAlt      = GenStgAlt      Id Id

{- Many passes apply a substitution, and it's very handy to have type
   synonyms to remind us whether or not the substitution has been applied.
   See CoreSyn for precedence in Core land
-}

type InStgTopBinding  = StgTopBinding
type InStgBinding     = StgBinding
type InStgArg         = StgArg
type InStgExpr        = StgExpr
type InStgRhs         = StgRhs
type InStgAlt         = StgAlt
type OutStgTopBinding = StgTopBinding
type OutStgBinding    = StgBinding
type OutStgArg        = StgArg
type OutStgExpr       = StgExpr
type OutStgRhs        = StgRhs
type OutStgAlt        = StgAlt

{-

************************************************************************
*                                                                      *
\subsubsection[UpdateFlag-datatype]{@UpdateFlag@}
*                                                                      *
************************************************************************

This is also used in @LambdaFormInfo@ in the @ClosureInfo@ module.

A @ReEntrant@ closure may be entered multiple times, but should not be
updated or blackholed. An @Updatable@ closure should be updated after
evaluation (and may be blackholed during evaluation). A @SingleEntry@
closure will only be entered once, and so need not be updated but may
safely be blackholed.
-}

data UpdateFlag = ReEntrant | Updatable | SingleEntry

instance Outputable UpdateFlag where
    ppr u = char $ case u of
                       ReEntrant   -> 'r'
                       Updatable   -> 'u'
                       SingleEntry -> 's'

isUpdatable :: UpdateFlag -> Bool
isUpdatable ReEntrant   = False
isUpdatable SingleEntry = False
isUpdatable Updatable   = True

{-
************************************************************************
*                                                                      *
\subsubsection{StgOp}
*                                                                      *
************************************************************************

An StgOp allows us to group together PrimOps and ForeignCalls.
It's quite useful to move these around together, notably
in StgOpApp and COpStmt.
-}

data StgOp
  = StgPrimOp  PrimOp

  | StgPrimCallOp PrimCall

  | StgFCallOp ForeignCall Unique
        -- The Unique is occasionally needed by the C pretty-printer
        -- (which lacks a unique supply), notably when generating a
        -- typedef for foreign-export-dynamic

{-
************************************************************************
*                                                                      *
\subsection[Stg-pretty-printing]{Pretty-printing}
*                                                                      *
************************************************************************

Robin Popplestone asked for semi-colon separators on STG binds; here's
hoping he likes terminators instead...  Ditto for case alternatives.
-}

pprGenStgTopBinding :: (OutputableBndr bndr, Outputable bdee, Ord bdee)
                 => GenStgTopBinding bndr bdee -> SDoc

pprGenStgTopBinding (StgTopStringLit bndr str)
  = hang (hsep [pprBndr LetBind bndr, equals])
        4 (pprHsBytes str <> semi)
pprGenStgTopBinding (StgTopLifted bind)
  = pprGenStgBinding bind

pprGenStgBinding :: (OutputableBndr bndr, Outputable bdee, Ord bdee)
                 => GenStgBinding bndr bdee -> SDoc

pprGenStgBinding (StgNonRec bndr rhs)
  = hang (hsep [pprBndr LetBind bndr, equals])
        4 (ppr rhs <> semi)

pprGenStgBinding (StgRec pairs)
  = vcat $ whenPprDebug (text "{- StgRec (begin) -}") :
           map (ppr_bind) pairs ++ [whenPprDebug (text "{- StgRec (end) -}")]
  where
    ppr_bind (bndr, expr)
      = hang (hsep [pprBndr LetBind bndr, equals])
             4 (ppr expr <> semi)

pprStgBinding :: StgBinding -> SDoc
pprStgBinding  bind  = pprGenStgBinding bind

pprStgTopBindings :: [StgTopBinding] -> SDoc
pprStgTopBindings binds
  = vcat $ intersperse blankLine (map pprGenStgTopBinding binds)

instance (Outputable bdee) => Outputable (GenStgArg bdee) where
    ppr = pprStgArg

instance (OutputableBndr bndr, Outputable bdee, Ord bdee)
                => Outputable (GenStgTopBinding bndr bdee) where
    ppr = pprGenStgTopBinding

instance (OutputableBndr bndr, Outputable bdee, Ord bdee)
                => Outputable (GenStgBinding bndr bdee) where
    ppr = pprGenStgBinding

instance (OutputableBndr bndr, Outputable bdee, Ord bdee)
                => Outputable (GenStgExpr bndr bdee) where
    ppr = pprStgExpr

instance (OutputableBndr bndr, Outputable bdee, Ord bdee)
                => Outputable (GenStgRhs bndr bdee) where
    ppr rhs = pprStgRhs rhs

pprStgArg :: (Outputable bdee) => GenStgArg bdee -> SDoc
pprStgArg (StgVarArg var) = ppr var
pprStgArg (StgLitArg con) = ppr con

pprStgExpr :: (OutputableBndr bndr, Outputable bdee, Ord bdee)
           => GenStgExpr bndr bdee -> SDoc
-- special case
pprStgExpr (StgLit lit)     = ppr lit

-- general case
pprStgExpr (StgApp func args)
  = hang (ppr func) 4 (sep (map (ppr) args))

pprStgExpr (StgConApp con args _)
  = hsep [ ppr con, brackets (interppSP args) ]

pprStgExpr (StgOpApp op args _)
  = hsep [ pprStgOp op, brackets (interppSP args)]

pprStgExpr (StgLam bndrs body)
  = sep [ char '\\' <+> ppr_list (map (pprBndr LambdaBind) bndrs)
            <+> text "->",
         pprStgExpr body ]
  where ppr_list = brackets . fsep . punctuate comma

-- special case: let v = <very specific thing>
--               in
--               let ...
--               in
--               ...
--
-- Very special!  Suspicious! (SLPJ)

{-
pprStgExpr (StgLet srt (StgNonRec bndr (StgRhsClosure cc bi free_vars upd_flag args rhs))
                        expr@(StgLet _ _))
  = ($$)
      (hang (hcat [text "let { ", ppr bndr, ptext (sLit " = "),
                          ppr cc,
                          pp_binder_info bi,
                          text " [", whenPprDebug (interppSP free_vars), ptext (sLit "] \\"),
                          ppr upd_flag, text " [",
                          interppSP args, char ']'])
            8 (sep [hsep [ppr rhs, text "} in"]]))
      (ppr expr)
-}

-- special case: let ... in let ...

pprStgExpr (StgLet bind expr@(StgLet _ _))
  = ($$)
      (sep [hang (text "let {")
                2 (hsep [pprGenStgBinding bind, text "} in"])])
      (ppr expr)

-- general case
pprStgExpr (StgLet bind expr)
  = sep [hang (text "let {") 2 (pprGenStgBinding bind),
           hang (text "} in ") 2 (ppr expr)]

pprStgExpr (StgLetNoEscape bind expr)
  = sep [hang (text "let-no-escape {")
                2 (pprGenStgBinding bind),
           hang (text "} in ")
                2 (ppr expr)]

pprStgExpr (StgTick tickish expr)
  = sdocWithDynFlags $ \dflags ->
    if gopt Opt_SuppressTicks dflags
    then pprStgExpr expr
    else sep [ ppr tickish, pprStgExpr expr ]


pprStgExpr (StgCase expr bndr alt_type alts)
  = sep [sep [text "case",
           nest 4 (hsep [pprStgExpr expr,
             whenPprDebug (dcolon <+> ppr alt_type)]),
           text "of", pprBndr CaseBind bndr, char '{'],
           nest 2 (vcat (map pprStgAlt alts)),
           char '}']

pprStgAlt :: (OutputableBndr bndr, Outputable occ, Ord occ)
          => GenStgAlt bndr occ -> SDoc
pprStgAlt (con, params, expr)
  = hang (hsep [ppr con, sep (map (pprBndr CasePatBind) params), text "->"])
         4 (ppr expr <> semi)

pprStgOp :: StgOp -> SDoc
pprStgOp (StgPrimOp  op)   = ppr op
pprStgOp (StgPrimCallOp op)= ppr op
pprStgOp (StgFCallOp op _) = ppr op

instance Outputable AltType where
  ppr PolyAlt         = text "Polymorphic"
  ppr (MultiValAlt n) = text "MultiAlt" <+> ppr n
  ppr (AlgAlt tc)     = text "Alg"    <+> ppr tc
  ppr (PrimAlt tc)    = text "Prim"   <+> ppr tc

pprStgRhs :: (OutputableBndr bndr, Outputable bdee, Ord bdee)
          => GenStgRhs bndr bdee -> SDoc

-- special case
pprStgRhs (StgRhsClosure cc bi [free_var] upd_flag [{-no args-}] (StgApp func []))
  = sdocWithDynFlags $ \dflags ->
    hsep [ ppr cc,
           pp_binder_info bi,
           if not $ gopt Opt_SuppressStgFreeVars dflags
             then brackets (ppr free_var) else empty,
           text " \\", ppr upd_flag, ptext (sLit " [] "), ppr func ]

-- general case
pprStgRhs (StgRhsClosure cc bi free_vars upd_flag args body)
  = sdocWithDynFlags $ \dflags ->
    hang (hsep [if gopt Opt_SccProfilingOn dflags then ppr cc else empty,
                pp_binder_info bi,
                if not $ gopt Opt_SuppressStgFreeVars dflags
                  then brackets (interppSP free_vars) else empty,
                char '\\' <> ppr upd_flag, brackets (interppSP args)])
         4 (ppr body)

pprStgRhs (StgRhsCon cc con args)
  = hcat [ ppr cc,
           space, ppr con, text "! ", brackets (interppSP args)]